How to assess fire safety designs based on CFD modelling?

Ensuring proper use of CFD models in Fire Safety Engineering

Prepared by Piotr Smardz

COMPUTER MODELLING IN FSE

Computer models are now used in the following areas of Fire Safety Engineering:

- Structural fire engineering (Vulcan, Safir, Ansys, Diana)
- Evacuation of buildings (Exodus, Simulex, Pathfinder)
- Spread of fire and smoke
 - Zone models
 - CFD (field) models
- Special purpose (DETACT)

EMPIRICAL / ZONE / CFD MODELS

Tools for predicting smoke (and fire) spread can be split into 3 categories:

 Empirical correlations Very simple to use Specific to a particular problem Applicable to a limited range of conditions 	 Zone models Simple and fast to use Application limits are defined Several connected compartments can be modelled 	 3. CFD (field) models Most sophisticated Require expert knowledge Provide "best picture" at the cost of long simulation times
Expl: Thomas' plume eqn	Expl: CFAST, OZone	Expl: FDS, Jasmine, Fluent

INBEPO

WHAT IS CFD?

The physics of fluid flow is described by a set of differential equations called the Navier-Stokes equations.

Computational Fluid Dynamics (CFD) is a numerical technique of solving these equations.

CFD is therefore a useful tool in investigating any process involving a motion of gas or liquid.

APPLICATIONS IN FSE

CFD modelling can be used in:

- Design of smoke control systems (also jet fan ventilation)
- Assessment of conditions for evacuation
- Assessment of thermal conditions in fire compartment
- Fire investigations (King's Cross, WTC)
- Research (BRE)

PRINCIPLES OF CFD (1)

- Computational domain is divided into a large number of control volumes (called the computational grid).
- Cells do not need to be uniform
- Obstructions, vents must conform to the grid
- Temperature, pressure etc. are uniform within each cell
- Boundary conditions are applied to define vents, extract fans, fire etc.

INBEPO

PRINCIPLES OF CFD (2)

Computational mesh:

- Structured
- Unstructured

Physical sub-models for:

- Turbulence
 - RANS k-ε (most codes so far)
 - ≻ LES (FDS)
 - DNS (not applicable)
- Combustion
 - ➤ Heat source
 - One-step reaction
 - Multiple-step reaction
- Radiation (Six flux, Monte Carlo)

INBEPO

CFD PROGRAMS

General purpose CFD codes:

- Fluent
- Ansys CFX
- Phoenics / FLAIR
- STAR-CD v4

Fire specific CFD codes:

- FDS (NIST)
- SmartFire (FSEG)
- SOFIE (CU)
- Jasmine (FRS)
- Kobra-3D (IST GmbH)
- Solvent (for tunnel fires)

See also www.firemodelsurvey.com

FDS – MAIN FEATURES

- Developed by NIST
- Sub-models for:
 - Turbulence (LES/DNS)
 - ➤ Heat transfer (FVM)
 - Combustion (mixture fraction)
- Multi-block, rectilinear grids
- Smokeview for viewing of results

VALIDATION OF CFD SOFTWARE

Example - validation of FDS:

- Experimental
 - Large scale tests by NIST and VTT, including WTC fire experiments
 - Small scale tests
- Comparison with standard fire tests (e.g. room corner test)
- Comparison with documented fires

CFD - GOOD PRACTICE

For a CFD simulation to be reliable we need:

- Proper assumptions / input data for
 - Fire (HRR, Smoke yields)
 - Ventilation (natural / powered)
- Proper selection of sub-models
- Reasonable grid resolution / cell aspect ratios
- Realistic boundary conditions
- "Internal check" of critical parameters
 - Flame temperature
 - Mass balance

GRID RESOLUTION

- Grid resolution can have significant impact on the accuracy of CFD predictions, particularly for LES models.
- Grids can be "stretched" in the areas of particular interest
- Domain size is typically limited to 3M cells for FDS simulations carried out on a single computer but can be larger for parallel simulations
- Proper resolution of fire area is also vital (for FDS: D/Ax>10, z*/Ax>20)

Plume temperature vs. grid resolution

CELL ASPECT RATIO

- Cox and Kumar recommend 1 to 50 as the maximum aspect ratio (RANS models).
- Lower values close to fire (ideally, close to 1:1)
- For FDS much lower ratios are recommended (1:3 can be adopted as a reasonable limit)

BOUNDARY CONDITIONS

- Do not use symmetry condition
- Vents should ideally be modelled as opes in walls and not as a boundary condition (domain should be extended to include the outside of the building)
- Be careful with specifying mechanical ventilation

TEMPERATURE PREDICTIONS

- Temperature should be monitored in "key" locations (e.g. within the fire compartment).
- Thermocouple readings should be used to create graphs (temperature slices may not capture all the detail of the temperature field)
- Flame temperature should not exceed 1300 °C, anything higher must be examined closely as it is likely to be caused by incorrect fire source specification

VISIBILITY PREDICTIONS (1)

- Light is attenuated when passing a distance L through smoke
- Light extinction coefficient K depends on the density of smoke
- Visibility through smoke depends on the type of object viewed:
 - C=3 for light-reflecting signs
 - C=8 for light emitting signs
- Density of smoke depends on the soot yield in fire [kg/kg]

$$I/I_0 = e^{-KL}$$

$$K = K_m \rho Y_s$$

$$S = C/K$$

VISIBILITY PREDICTIONS (2)

- Specification of appropriate smoke yields is crucial for correct visibility predictions
- For flaming fires y_s range from 0.01 to 0.20
- Smoke yields increase in under-ventilated fires
- Visibility between two points: iso-surfaces of smoke concentration vs.
 line-of-sight integration of smoke concentrations

INBEPO

CFD MODELLING REPORT

When CFD is used as a tool in FSE design a detailed report should be produced containing the following information (as a minimum):

- Name and version of the CFD model used
- For less known codes information about the developers and validation for fire applications
- Type of the sub-models selected for turbulence (RANS/LES), radiation, combustion etc.
- Type and resolution of the computational grid, total no. of cells (for FDS also the no. of meshes) and maximum aspect ratio
- Assumptions made in relation to the design fire, smoke yields, material properties of enclosure, wind conditions etc.
- Print-out of sample input files
- Summary of results (full results should also be attached on CD)

INBEPO

EXAMPLE 1 – KING'S CROSS FIRE

CFD analysis used as part of the official enquiry into fire (1987) in King's Cross underground station.

Unexpected behaviour of fire predicted by the CFD analysis.

EXAMPLE 2 - WTC INVESTIGATION

As part of the investigation into the WTC collapse FDS was used by NIST to estimate thermal conditions on the fire-affected floors.

The results were used as input data for further structural analysis.

Large scale experiments to Validate FDS for this application

CFD CASE STUDY - LARGE ATRIUM

INBEPO used CFD modelling to predict smoke spread in the main atrium of the new university library in Wroclaw (Poland).

- Simulations carried out using FDS ver. 5
- 4 different fire locations modelled
- Multiple meshes used
- 1.8M-2.4M grid cells in total
- Results: visibility / temp

INBEPO

CFD CASE STUDY - LARGE ATRIUM

Smokeview 5.3.10 - Jan 30 2009

www.inbepo.com

Slice m

CFD MODELLING - SUMMARY

- It is a powerful tool for fire engineers (but only if used correctly!)
- Well validated for many FSE applications
- Good for smoke spread and temperature predictions (far-field), research is still on-going for more complicated phenomena such as flame spread, burning rate prediction & smoke production (near-field)
- Provides better picture than zone models but is much more time consuming
- Widely used worldwide to design complex buildings such as airports, underground stations, large atrium buildings etc.
- Right assumptions and selection of appropriate submodels are critical for correct results
- Rubbish in = rubbish out (also true for zone models)
- Users need to be experienced fire engineers, competent in both fire science and numerical methods

INBEPO

